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METHCD OF DETERMINING OPTIMAL SPACECRAFT

TRAJECTCORY CORRECTION

V. A. Kuz'minykh

ABSTRACT., We examine an optimal spacecrart

trajectory correction method consisting

of de-

termining the coptimal energetics and strategy
for interplanetary spacecrafft trajectory correc-
tion. Caleculiation resuiﬂs for the Earth-Jupiter
flight trajectory are presaented. The feature
whloh distinguishes this method from those de-

veloped previously involves account for

orbit

determination errors based on trajectory meas-
urements and the correcting impulse execution

errors.

Introduction

Spacecraft [Saj\whlch are launched at the present time are /3%

equipped with motion parameter measurement gystems,

orientation and

stabllization systems, and powerﬁﬁiémt§"ﬂh;gguggrm1§“Qgptrqi“afnzha

motion in outer space. One of the control modes is trajectory cor-

rection — impulsive wvariation of the SC velocity
the objective of correcting the deviations of the
parameters from thelr values corresponding to the
'_flight trajectory.

#
Numbers in the margin indicate pagination in the
text.
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In general form, the correction problem can be formulated as
follows. As a result of SC motion obserivation, we establish on the
basis of trajectory measurements the discrepancies between the para-
meters of the actual and nominal trajectories. If the discrepancies
exceed the allowable values, then for specifled or variable engine
Tiring times we must determine thé direction and magnitude of the SC
velocity change, as a result of which the indicated discrepancies

are reauced and will not exceed the allowable values.

The energetic characteristic of the correction is the total
impulse. By correction strategy, we mean the rule specifying the
correcting impulses on the basis of trajectory measurements and SC

trajectory prediction.

2. Basic Parameters and Relatilons

On the basis of [1], we introduce the correcting and corrected
vectors and determine the generalized linear correction, with account
for correction execution errors.

We denote by I, the set of indices {Ij.nﬁﬁ\ With each element k

N
of the set I., we assoclate the Euclidean space K of dimension n, /U

—— the space of the correcting vectors at the point k, whose elements

) e ey
are the vector Vﬁ’zvﬂ'"%%}/with the norm:

RIS ’v;‘i,j ) (1)

and the vector Sﬁéfgﬁzﬁﬁ}\characterizing the V, "execution" error.

For each k, we examine the Euclidean space Tkm(%:jﬁﬁxof constant

dimension m, in which there appear the corrected parameter vectors:| .

T R e

If the matrices of dimension A _ are given (the methods for calculat-

k
ing the Ak matrices were presented in [1, 2]), the N linear mappings



Ri* — R™;

B Al 87 (@)

determine the generalized and linear orbital correction. To every k,
we place in correspondence the state vector i;=h2@{?\ig62r\ The

components of the i@ﬁtor Xy

coordinates of a 3C performing an interplanetary mission, and the

may be, for example, the planetocentric

deviation from the normal value of the time of SC approach to the
target planet after application of K correction impulses. In gddi-

tion, we introduce the initial state vectorﬁgféﬁﬂg;ﬁhi?t We denote

the nominal value of Eb by b. We assume that the upper bounds
%ﬁ?ffffm)yof“thé\mbdﬁli‘of the compohénts of the vector ib - b are

known a priori, the inequalitieslﬁ?f&BﬁE in ‘this case define the re-

5 p
~gion Q%?R/{ We examine as the corrected parameter vector:

Fo Tl C(3)
From (2) and (3), we obtain the equalities:

En = Tnes + RelVorC Vts)‘i\ (h)

- s N .

We denote by'ﬁfﬂER/Jthe estimate of the vectork;;,, determined on
the basis of trajectory measurements on the time intervalA(QﬁtE'ﬂ.
Then the relation is wvalid '

Geoy = Tt + 8E,0 ) (5)

in which}gigﬁ 15 the error of determination of the vector EpJ,

‘.v——\: 4.-— N R _‘_‘ —— A',i S— ,ﬁ,,['; ,' ,,,T,
«Jitg_i eRm ) A""("K-f 2{61,:(." IK-’! \

Application of optimal orbit determination strategy [3] permits
Y
finding f&,:qgnmgﬂ&gﬁl where B 1s the ensemble of all possible meas-

urement compositipns’for the given strategy, and p. are bounded |

R d

errors of measurement of the function %m%ﬁfzﬂ, which depends on the



parameters‘ﬁéﬁfiﬁlwhich determine uniquely the trajectory and the a
priori information on these parameters. Lef us examine the set

£y m —

@ﬂf&)of vectors &Qﬁ\ for the components of which the inequality is

satisfied:

5ty
o) < o) (6)

1 m-r
We further let Zc {?’ééﬁjbe the "sighting" vector for the k'h correc-

tion impulse, connected with the ﬁectorslg}u KJ and the matrix Ak

by the relation:
Fe= e v AL o
From {(5) and (7) follows the equality:

| Ee = Tt + 0Ty + il (8)

We assume that the components cf the vectorslﬁzx are represented as:

‘5 V“ ZE‘E '\Zy. .3 “’““* \ (9)

where fx; is a random vector of dimension n From the various com-

k*
ponents of the vector {Em EszL we form the vector, w= {JM'°dkﬂ%y‘@X

and consilder that its components are‘bounded:

]¥K3| lke Eifii'\ (10)

The inequalities (10) define the region A, in V — the Euclidian

k
space measure.

By V., we mean either [4] the minimal with respect to norm {(I)
(with the condition ngﬁx—ﬂﬁ), or the solutlon of (8) determined

" using the Cramer rule (w1thiﬂ<ng H}ﬁ}nA):

Ve MR B Te) | = DB Z - T) | Y



in which Ak is a known matrix of dimension n, -« m, Bk is a matrix

of dimension m - m, expressing the n, free components Ek:

[ Eng O (mex tm-ni)
jguz ( OKlm rl-c)"m) . )\

Wwhere EnK {nn*mtﬂdiﬂm1ﬂdﬂnL respectively, are a ﬂK“‘\unlt matrix and

hﬁ*#ﬁ'h \null matrices. We shall assume that"trajectory measurements
i ) X om

processing is accomplished by the maximal likelihood method. The

computaticnal formulas for the estimate 5&1\and covariation matrlx\

QK(gI&J\are presented in [51 and El]. As is known, the mean-square
errcrs of the components of the Vector‘gfxq\are:

R

YTR(E,

G»Ltsxl‘ﬂi)

We introduce the following sets of vectorszsikd\:

CSI-.ct/ ls me 6{&(“))—\

3. Optimality Criterion

It follows from (4), (9), and (11) that X, and vk depend on the
parameters‘inﬁiau.gi;xirnimgrji} while x,_ also depends on%;:V
Tn R™ we specify the region $2 ( ch?\ with the aid of the inequali~
ties?ﬁrﬁJﬁ&,% — the maximal allowable discrepancies. Under the

assumptions made, we determine forii;uSEg;:SiprRmf.ikéﬂm the best

guaranteed total correction impulse estimate:

-E\‘-— MK MK LML LR X . moX mixmi (Zu{,)
[

Ko 8% Z F, 6% ol $p g 7 (12)
with the conditions on the choice oflihiﬁ\for each given EO: /T
T R AR 1]
(T E- :ﬁ,/]" max glsw— Bl < B, (13)
%" - S-LOb‘i a;r".'” ) .
*'1_: ‘1.--. o, ‘ ‘



Estimate {9) corresponds to successive SC ftrajectory correction with

account for the errors characterizing:
(1) SC injection into orbit;

(2) determination of 3C orbit on the basis of trajectory meas-

urements;
(3) execution of the correcting impulses.

Control effectiveness is characterized by selection of the para-

metersiiﬂ_;bxzﬁ~-ﬂﬂ., Let us examine the following z selection pro-
cedure, specifying the correction strategy. For the fo and

%151“’ Lf 4 determined as a result of traJectoryymeasurement prqgj

cessing, we first calculate the z1 for which: s

Q(g mo_xmm . maoxmin (Z hr )\

oy 5'!;#-1 v L‘ ¢ 7
for 8%\ and 2. %/, satisfying the inequalities

GG F T = g M) -t |

1"i

where M is the mathematical expectation symbol, Then in order to
determineigge.g;q\zﬂuigﬁisﬂﬁiﬁ, and also in order to calculate

§

a0 15), we Tind the ‘z“n for which

!37

ST T e T T . Max min 2 W
S s s g i

for ﬁ ..%, satisfying the inequalities:
- T T T T
Ol % Ey) = Smax iM~— {*ch; - g f
’ A dx .
ll'l\ ﬂ) and\(ﬂn) . 8-4./& i & fDn ts LEdn. Siz & P‘g;_
. ‘;EF_ € -Af glﬁ 6’- Ak‘ . C ‘

The Eh selection preoblem is mathematically analogous fo the Problem

(12) - (13).



We note that caleculation of In reduces to minimization of WN

with respect to EN.

4, Optimal Parameter Theorem

Inequalities (13) define the set QfJ%fiﬂlOf dimension N - m, for
which the lemma holds: the set @i&?&;fg}lis convex. For definiteness,
in view of the convexity of;ég/, we shall consider that in @ﬁg there
is inseribed the "beam".Bix{iw-ggﬂﬁgé;éQ%J: the set of vectors
gELl%gv, for the components of which the inequalities are satisfied

Aki & i € Pri K d K, = hem]
In this case, BT, = Bix, t.+ Byx,|,
(15550\ is the direct sum of the sets Bnéc.?_é_\_Qn’cg)H, BKEp%Q\&'—tif}th*?m$bml‘k s
%

=E\for k # k. We denotethe boundary of the setéﬁﬁi& by Tgﬁé.

In finding I, we perform minimization with respect to =z, on

: k
the sets ﬁ&x&.
e M -
We denote by Stojﬂﬁkand‘ﬂk, the sets of boundary points of the

regions'sé:Tﬁ;ﬂ and Aj .

On the basis of £6] - [9], the mathematical solution of the
problems posed 1n Section 3 leads fo the following theorems.

Theorem 1: the extremal value of I is reached for

Fe € 28, 5%y e Ry He AX)

" Theorem 2: the extremal value is reached for

e B |



Theorem 3: for Wi WayL 04} with the conditions Sxwh,

the inequality ”ﬁﬂqﬂbgﬁls satisfied.

5. Algorithm for Calculating the Optimal Correction

EBnergetics Estimate

Let us examine two-lmpulse (N = 2) two-parameter (m = 2) inter-
planetary SC traJectory corrections in which the engine can be

oriented arbitrarily (nk = 3}, We shall consider that the transfer

fime T is fixed.

In accordance with [2], we write (11) in the form

Vo = Gl bl - 280 T (e o624 7)) (14)

where Gk and F% are equal to

S

T ﬁ Ty o T T
3 — '-"_ #X
‘@kk¢' Imélﬁﬁﬁ_}J ' ; Sglﬁ ’\\

3:.

\H&;@ﬂ are, respectively, the first and second rows of the matrix Ak’

It follows from vector algebra that the eqgualifies are sgatisfied

A Te=t, ﬁg «;-f*? ,,_EL;E;@O_,___T}(-%Q\ . (15)
We take the following correcting impulse execution error model [10]:

W = ErV + Pt | (16)
Where Ek 1s the vector of correcting velocity direction angular
error, Bk is the proportional error in the correcting increment
magnitude, and]E“ri;{éggfﬁ:tzﬂJﬁJEEQ. With the notations used,
%in {ef&lﬁyﬂﬂ. We note that each set Q2 R&,(x-12 ) consists in the
present case of four veotorsland_ﬁ consists of 16. From (15), (14),

k
(8), (4), and (16), we obtain:



: (i} - l i ‘ "t
,r’& s Fti]l 5—) et "F‘\ l} :E}‘_)}S"::{}i_
1{;&; b L».Lx i -fl-."‘)‘-—l( ("\x =< 3, )

(17)

o g ey pa(2 B X ¢ (18)
O g[ts"-—i:‘\—s_‘c‘(,)t& {An*(‘i )
From (17) and (18), we obtain: /10
xf = Vg 670 8%, .éfl.a’z,tufa) (19)
. 1[1' 10 (30 5"*0 é;?;“! rl’i: 5*{;_ ?hf‘? ‘ (20)

On the basis of Theorems [1, 2] and the Relations (1}, (14), (19),
(20), we examine the following computational algorithm.

For eachiﬁ%&ﬁagxon the basis of (19) and (20), we determine the
size of the set EQjA for each measurement and plot the "beam"
\Bxbt.QfoX We then apply the. sequential maximum calculation method

with use of interpolation with respect to 2. on the set}Bﬁwa(we

1
denote the set of interpolation nbdes'ﬂziob. The calculations are
made forf;@fﬁ%ﬁ,[53wwégi.ﬁleﬁﬁigg\, using the following scheme.

minwp — rmxnun,uf — nnnrﬂaxnnn.ﬁffgy_;
by, AR B, Bz, MBS bz,
. : . F s maxmin maxmm[w‘ruf) - J.
interpclaticn 7¢ & 52*2: Bu,m R @Ha -
w. respect to - o o

6. Numerical Examples

The quantity I was determined for given nominal 3C trajectory
from the Earth to Jupiter with launch data August 15, 1976 and T =
448 days. As the corrected vector, we selected (£, n) in the target
planet picture plane [2].

' The initial numerical data are presented in Tables 1 and 2%

tl and t2

correction impulses in days, the elements of the matrix A

~.
—
=

|

denote the times of application of the first and second

02 genoted

by & (11) ... A& (23), were calculated along the nominal trajectory



*®

TABLE 1.
- [ete] AT AT AT (AR | Al | Alzs]__ ]
60 -I,4I5| 2,017 0,908 [0,044 | -0,952 | 2,192
1801 -0,92 | 1,809 0,805 {0,047 10,859 | I,983
[ 300} 0,565 | 1,0% [ 0,461 [0,028 | ~0,50T | 1,116

. :
Commas represent decimal polints.

TABLE 2.F%
Ttaea [ o] i@ Y 6"
b 1(60,780) 996 | I4I8 62 ' 1415
: {60, 200) 9% | 1418 33 I393
1180, 200) 42 | 1358 29 | 1338

" ——
Commas represent decimal points
7 . 0] 1} {“l 2]

at 10' sec, the optimal pr'og1'1osr\=;slﬁg.,!1:;_1 i}%i were calculated for
the corresponding times in hundreds of kilometers. The folléwing
were taken as the initial numerical values:

“foy TT75¢10%k, "ﬁoz'=~I023‘*71073KN} By= B; =ISC*_ID?'HHQ
e= o =0,001, 660,005, - By = f, 0w, |

The results of the numerical solution are summarigzed in Table 3,

where 1, Wy, W, are in meters per second, the components of the

vectors £m2p2A and.gniu%ijﬁﬁﬁj}a% are in hundreds of kilometers.

TABLE 3.%

(t, )| Jwwl &, o % Sk

(60,180) | €0,38,22| I1710,-10230 4848,-3476 | 355,17 [455 1472
- (60,300) | 80,41,39| -11710,10230 |-3182,4576 |362,23 |429,1450
180,300) 100,30,70 | ~11710,-10230} -5108 ,~7412 | 365 ,~37 {437, T434]

|

* - - . - - = .
Commas represent decimal points.

10



We see from Table 3 that:

1) early trajectory correction with tl = 60 days and b, = 180

days 1s energetically advantageous;
2) with increase of t2, the ratio wl/I decreases.

We note the suggestion in [11] of the necessity for a charac—
teristic velcclty margin on the order of 100 - 300 m/sec for trajec-
tory correction in order to hit Jupiter. The time required to cal-

culate the optimal parameters for a single pair (¢t t2) (Table 3)

lJ

on the BESM-4 electronic computer was about 55 minutes.

In conclusion, the author wishes to thank Prof. P. E. El'yas-
berg and B. Ts. Bakhshiyana, Cand. of Phys. Math. Sci., for formu-
lating the problem, providing the initial numerical data, and their

continued interest in the present study.
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